文章主题:视频加载, 刷新页面, 再次尝试

666AI工具大全,助力做AI时代先行者!

前段时间张颖在混沌学园的AI大会上,分享了一些对AI趋势的判断,和对AI创业的7条建议,他在第一条建议中就提到:

“AI的学习和应用,大家一定注意,用起来、有效迭代大于一切。一个关键点就是要学会写提示词,知道如何提问非常关键,怎么能更好的与AI互动也是一门学问。”

今天我们稍微把“Prompt Engineering”(提示工程)展开聊一聊。年初,各种Midjourney用词宝典火遍互联网,比如:

熠熠生辉的霓虹灯 glittering neon lights

高角度视图 high angle view

未来主义抛光面 futuristic polished surfaces

古典风,18-19世纪 Vintage

浮世绘 traditional Japanese ukiyoe

……

直到最近,大神们又在二维码上玩出了花活,写好风格、元素的提示词,就能出一些别具一格的“AI艺术二维码”:

视频加载中的问题与解决办法视频加载中的问题与解决办法

我们知道,能不能用好大语言模型,很大程度上取决于你提示词的质量,但别把提示词想简单了,它可不仅仅是在提问题时多说几个词或几句话那么简单,之所以叫Prompt Engineering(提示工程),就是因为有很多复杂的工程实践。

今天这篇文章,我们从两个案例入手,第一个是纯文本的例子,第二个是需要代码来实现的例子,来介绍Prompt Engineering(提示工程)的一些重要原则与技巧:

第一个案例,是在一些AI社区里很火的“爆款文案模型”,主要通过纯文本来给AI写好模板和规则提示。第二个案例,是吴恩达与OpenAI官方合作的ChatGPT提示工程课程中,“订餐机器人”的例子。最后,我们来总结一些Prompt的基本原则和技巧。

当然,提示词的纯文本和写代码之间,并没有本质区别,用代码实现是为了省token和令输出更稳定、精确,因为中文还是会占用更多token,当你需要大规模调用API的时候,成本会急剧上升。纯文本的提示词也可以构建得很复杂,比如我就见过600多行的文本提示词,并且由多组模块构成。

1

一个爆款文案模型(纯文本)

我们先简单介绍一下什么是“Prompt Engineering”(提示工程)?通常是指,将你想提的问题,转换为特定格式的输入,并使用预定义的模板、规则和算法来处理,让AI能够更好地理解任务并给出相应的回答。最大程度地让AI精确理解任务,减少因为语言表达不清晰而导致的误解和错误,使其能够准确、可靠地执行特定任务。

下面我们进入这个文本例子。在很多需要文案的场景,比如电商页面、小红书种草文案、论坛帖子等等,如果你直接让AI去写作,可能效果并不好,但通过这“五步”Prompt,能令输出质量提升、结果更稳定。

第一步,把你觉得不错的文案“喂”给AI,并且要明确让AI学习这个文案,我们需要明确对AI说:“接下来我会发给你一个文案学习,目的是建立爆款文案模型,你学习完,只需要回复:已学习。文案如下:”

视频加载中的问题与解决办法

第二步,在AI回复了“已学习”后,我们要开始让AI来给这个文案的文笔文风建立模型。

视频加载中的问题与解决办法

第三步,一般来说AI这时候总结得并不好,我们需要让AI更进一步地学习并更改自己的答案,这时候我们可以给AI一个框架。当然这一步也可以直接融合在上一步里面。

视频加载中的问题与解决办法

第四步,我们让AI来给每个部分分配权重。

视频加载中的问题与解决办法

第五步,我们给这个模板命名,让AI能快速调取。

视频加载中的问题与解决办法

下面举几个应用例子:

视频加载中的问题与解决办法视频加载中的问题与解决办法视频加载中的问题与解决办法视频加载中的问题与解决办法

对于很多相对格式化,不要求较高创造力的文案领域,AI的内容已经达到了基准线之上,剩下的还可以通过人工修改。

你也可以继续对这个模型进行微调,比如要求AI写得更富创造力,或是“喂”给AI更符合你需要的初始文案,可以依据这个训练思路、框架来训练更适合你的文章模型。

最后,这个训练模型的链接如下,感兴趣的朋友可以试试:

https://chat.openai.com/share/787b114c-4e09-4356-8811-2f8dc2b987ad

基于这种训练思路,网友们还开发出很多有意思的场景,可以一试:

视频加载中的问题与解决办法视频加载中的问题与解决办法视频加载中的问题与解决办法

2

一个订餐机器人模型(通过代码实现)

如何利用ChatGPT构建一个订餐机器人?我们可以通过Prompt Engineering来实现。

这个订餐机器人案例来自DeepLearning.ai的课程。DeepLearning.ai 创始人吴恩达与OpenAI开发者Iza Fulford联手,推出了一门面向开发者的Prompt Engineering课程。吴恩达是AI领域的明星教授,是斯坦福大学计算机科学系和电气工程系的客座教授,曾任斯坦福人工智能实验室主任。

视频加载中的问题与解决办法

ChatGPT是一个聊天对话的界面,我们可以由此构建一个自定义功能的聊天机器人,比如给餐厅的AI客户服务代理,或是AI点餐员等角色。

但由于这是商用场景,我们需要ChatGPT的回复精确而稳定,这时候用计算机语言比纯文本更为合适,所以我们需要先部署OpenAI Python包。

视频加载中的问题与解决办法

对于这种自定义聊天机器人模型,本质上我们是要训练一个这样的机器人:它能够将一系列消息作为输入,然后把模型生成的消息输出。在这个例子中,用的是GPT-3.5,3.5在现阶段可能更适合商用,因为GPT-4太贵了。

这个订餐机器人的应用场景是一家披萨店,所实现的功能是:首先问候顾客,然后收集订单,并询问是否需要取货或送货。如果是送货,订餐机器人可以询问地址。最后,订餐机器人会收取支付款项。

在实际的对话中,订餐机器人会根据用户的输入和系统的指示来生成回应:

用户说:“嗨,我想要订一份比萨饼”

订餐机器人会回应:“很好,您想订哪种比萨饼?我们有意大利辣肠、奶酪和茄子比萨饼,它们的价格是多少”

在整个对话过程中,订餐机器人会根据用户的输入和系统的指示来生成回应,从而使对话更加自然流畅,同时又避免在对话中插入明显的提示词信息。

首先,我们定义“帮助函数”,它会收集用户消息,以避免我们手动输入。这个函数将从用户界面中收集提示,并将它们附加到一个称为上下文(context)的列表中,然后每次都会使用该上下文来调用模型,这里面包括了系统信息,也包括了菜单。

视频加载中的问题与解决办法视频加载中的问题与解决办法

ChatGPT的反馈和用户的反馈都会添加到context中,这个context会变得越来越长。这样一来,ChatGPT就拥有了它所需的所有信息,来决定下一步该怎么做。以下是context所部署的提示词:“你是订餐机器人,一个收集比萨饼店订单的自动服务。你首先问候顾客,然后收集订单,并询问是否要取货或送货。”(详细见下图)

视频加载中的问题与解决办法

如果实际运行起来,将是:用户说“嗨,我想要订一份比萨饼”。然后订餐机器人说:“很好,您想订哪种比萨饼?我们有意大利辣肠、奶酪和茄子比萨饼,它们的价格是多少”

由于提示词里面已经包含了价格,这里会直接列出。用户也许会回复:我喜欢一份中号的茄子比萨饼。于是用户和订餐机器人可以一直继续这个对话,包括是否要送货、需不需要额外的配料、再次确认是否还需要其他东西(比如水?或是薯条?)……

最后,我们要求订餐机器人创建一个基于对话的、可发送到订单系统的摘要:

视频加载中的问题与解决办法视频加载中的问题与解决办法

在最后这个输出环节,输出的内容包括:产品大类(披萨、配料、饮品、小吃……)、类型、大小、价格、是否需要配送及地址。由于我们希望结果是完全稳定、可预测、不需要任何创意性的,所以我们会把temperature设为0。最终可以直接把这样的结果,提交给订单系统。

由于避免这篇文章里全是代码,相信大家也不愿意在手机上看到密密麻麻的代码,我们只把要点放在这里。如果你想进一步学习,可以观看这个详细教学视频:

关闭
观看更多
更多
正在加载
正在加载
退出全屏

视频加载失败,请刷新页面再试

视频加载中的问题与解决办法 刷新
视频加载中的问题与解决办法
https://www.deeplearning.ai/short-courses/chatgpt-prompt-engineering-for-developers/

3

一些关键原则与技巧

最后,我们来总结一下两个关键原则,以及大语言模型目前的局限性,你需要知道大语言模型能力目前的下限在哪里,更有助于寻找具体的应用场景。

两大原则是:编写清晰具体的指令、给模型充足的思考时间。

视频加载中的问题与解决办法

原则一:编写清晰具体的指令。

这个原则强调了在使用ChatGPT等语言模型时,需要给出明确具体的指令,清晰不等于简短,过于简短的提示词往往会让模型陷入猜测。这个原则下有4个具体策略:

1)使用定界符清楚地限定输入的不同部分。

定界符可以是反引号、引号等等,核心思想是要清晰地标识输入的不同部分,有助于模型理解和处理输出。定界符就是为了让模型明确知道,这是一个独立的部分,它能够有效避免“提示注入”。所谓提示注入,是指在一些用户新添加输入的情况下,可能误产生一些冲突的指令,导致结果不对。

视频加载中的问题与解决办法

2)要求结构化输出:为了使解析模型输出更容易,可以请求结构化输出。

在提示词中,你可以明确:生成三个虚构的图书标题,以及它们的作者和流派,使用以下格式提供:书籍ID、标题、作者和流派。

视频加载中的问题与解决办法

3)要求模型检查是否满足条件。

如果任务有假设条件并且这些条件不一定被满足,那么可以告诉模型首先检查这些假设条件,如果不满足则指示出来,并停止任务直接反馈,以避免意外的错误结果。

比如在以下例子中:我们将复制一段描述如何泡茶的段落,然后再复制提示词,提示词是如果文本包含一系列指示,请将这些指示重写为以下格式,然后写出步骤说明。如果文本不包含一系列指示,则只需写下“未提供步骤”。

视频加载中的问题与解决办法

4)小批量提示:在要求模型完成实际任务之前提供执行任务的成功示例。

这个策略简单而重要,就是我们在提示词中,可以包含一个正确的示例。比如我们要求模型用风格一致的口吻来回答,输入的任务是“以一致的风格回答问题”,然后提供了一个孩子和祖父之间的对话示例,孩子说:“教我什么是耐心”,祖父用类比的方式回答。

现在我们要求模型用一致的语气来回答,当下一个问题是:“教我什么是韧性”。由于模型已经有了这个少量示例,它会用类似的语气回答下一个任务,它会回答:“韧性就像能被风吹弯,却从不折断的树”。

原则二:给模型充足的思考时间。

如果模型因急于得出错误的结论,而出现了推理错误,应该尝试重新构造提示词,核心思想是要求模型在提供最终答案之前,先进行一系列相关推理。这个原则下有2个策略:

视频加载中的问题与解决办法

1)指定完成任务的步骤:

明确说明完成任务所需的步骤,可以帮助模型更好地理解任务并产生更准确的输出。

2)指导模型(在急于得出结论之前)制定自己的解决方案:

明确指导模型在做出结论之前,自行推理出解决方案,可以帮助模型更准确地完成任务。

附加讨论:如何看待模型的局限性?

目前大语言模型商用最大的问题是“幻觉”。因为在其训练过程中,大模型被暴露于大量知识之中,但它并没有完美地记忆所见到的信息,也并不清楚知识边界在哪里。这意味着大模型可能会尝试回答所有问题,有时会虚构出来一些听起来很有道理,但实际上不正确的东西。

一种减少幻觉的策略是,首先要求大语言模型从文本中,找到所有相关的部分,然后要求它使用那些引文来回答问题,并将答案追溯回源文件,这种策略可以减少幻觉的发生。

视频加载中的问题与解决办法

今天这篇文章比较实操,我们通过2个案例(一个纯文本、一个通过编程),来解释了Prompt Engineering(提示工程)一些更深入的应用。

像GPT-3.5、GPT-4这样的大语言模型,它什么都懂,但恰恰也是因为太广泛,而导致如果你不给它提示的话,你得到的回答经常是车轱辘话。

这时候Prompt(提示)的重要性不言而喻,并且不仅仅是一个词,或是一个简单的句子,如果你想实现更复杂的功能,也同样需要更复杂的提示词。

Prompt也需要大家开脑洞,想出更新奇或是更适合自己的玩法,它的“独家性”也很强。比如之前获奖的《太空歌剧院》,作者号称自己花了80多个小时、900多次迭代才出来这幅作品,至今也拒绝共享Midjourney用了什么提示词。

视频加载中的问题与解决办法

当然,Prompt本身,可能只是一种阶段性的需求,Sam Altman曾说:五年之后,可能不再需要提示工程师这个职位,因为AI会产生自我学习的能力。但不可否认的是,这个“阶段性需求”,是真正助力AI切入商业各个环节的重要利器。

我们现在也不需要从零开始摸索,国内外有很多不错的Prompt社区,大家都在交流提示词使用心得,甚至列出了有哪些当下热门的提示词,我们会在文末附录中列出。

从创业/投资角度说,如今大家都在讨论应用层的机会到底在哪里,常去这些提示词热门网站看看,也许能从那些新发布的热门提示词中,找到一些应用场景的创新灵感。看得再多,不如下场一试。

附录:一些提示词讨论网站

1、 AI Prompts社区:

https://flowgpt.com/

(一个海外热门的提示词网站,可以按热度排序,覆盖场景非常齐全。)

视频加载中的问题与解决办法

2、 Writing Prompts on Reddit (r/WritingPrompts):

https://www.reddit.com/r/WritingPrompts/

(Reddit上的Writing Prompts版块是一个非常活跃的社区,用户可以发布和回应各种写作提示词。)

视频加载中的问题与解决办法

3、 列举了100条最佳提示词

https://gridfiti.com/best-chatgpt-prompts/

(为您的工作流提供支持的100个最佳ChatGPT提示词。)

视频加载中的问题与解决办法

4、 一个中文提示词网站:

https://www.aishort.top/

(可以按热度排序,覆盖的场景非常齐全,从写作、编程到金融、医疗等等。)

视频加载中的问题与解决办法

5、 另一个中文提示词网站:提示精灵

http://www.promptgenius.site/

(小红书文案排序最高,对提示词有更直观的展示。)

视频加载中的问题与解决办法也许你还想看:

经纬张颖:AI的远与近

经纬2022年终盘点:乐观者前行,follow the white rabbit

经纬张颖:2023,不只克服困难而是习惯困难 

经纬徐传陞:做VC这么多年,人们总在问我同一个问题 ChatGPT之父Sam Altman:大型AI企业,将诞生于哪些领域?

视频加载中的问题与解决办法

视频加载中的问题与解决办法

AI时代,拥有个人微信机器人AI助手!AI时代不落人后!

免费ChatGPT问答,办公、写作、生活好得力助手!

搜索微信号AIGC666aigc999或上边扫码,即可拥有个人AI助手!